

MED-GOLD Living Lab 2020

Turning climate information into value for traditional Mediterranean agri-food systems

The grape and wine industry case study

Green Team

Anić Marina, Eccel Emanuele, Krouma Meriem, Mastrantonas Nikos Mentor: Pasqui Massimiliano

Case of study

Duro Valley

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776467.

Climatology vs Seasonal **Forecast**

What to choose?

This project has received funding from the European Union's Horizon 2020 research and innovation program

Climatology

	EOBS	ERA		ERA_LAND			
Over 200 mm	7 (10.0%)	2 (4.88%)		4 (10.26%)			
Under 100 mm	37 (52.86%)	20 (48.78%)		16 (41.03%)	\mathcal{I}	\rceil	

Model used: ECMWF system 5

Nominal Lead Time	Actual Lead Time			
2 weeks (6 April)	2 weeks (5 April)			
3 months (20 January)	~ 3.5 months (5 January)			
6 months (20 October)	~ 6.5 months (5 October)			

Forecast

2 bias correction methods were introduced (Ratio Bias and Quantile Mapping)

Forecast/Climatology Scores

Metrics	CI	F2W	F2W_rBC	F2W_qmBC	F6M	F6M_rBC	F6M_qmBC
CRPS	30.99	37.50	34.53	33.47	37.57	34.35	32.54
Brier>200	0.12	0.14	0.14	0.14	0.14	0.13	0.12
Brier<=100	0.76	0.70	0.72	0.72	0.72	0.73	0.74

Steps for a more realistic approach

Use more forecast products

Provide outputs based on terciles

Check more variables

Consider incremental purchasing of protective equipment

Many thanks
From the Green Team